Empty-Backhaul Management

Thara Angskun, Ph.D.
angskun@sut.ac.th
Truck Transportation

- The most popular mean of freight transportation
 - Door-to-door delivery

- Empty-backhaul problem (empty load on the way back)
 - 46% of all trips in Thailand
 - Wasting unnecessary energy
 - Making air pollution
Empty-Backhaul Problem

- **Cause:** lacks of planning and collaboration
 - Not enough service requests to match trucks
- **Solution:** Thai truck alliance project
 - **Purpose:** Share service requests and trucks among members
 - **Collaborations:**
 - 120 trucks from 10 companies (12,480 trips per year)
 - Empty-backhaul (5741 trips per year / 2.3 M km. per year / 0.66 M Liter per year)
 - 2 truck cooperative
 - Suranaree University of Technology : IT / Comp Eng. / Transportation Eng.
Empty-Backhaul Management Model

Before matching (requests & empty trucks)

1. **Shipper A**
 - Service Request
 - Linehaul Truck
 - Carrier 1
 - Empty-Backhaul Truck

2. **Shipper B**
 - Service Request
 - Backhaul Truck
 - Carrier 2
 - Empty-Linehaul Truck

3. **Shipper C**
 - Service Request
 - Carrier 3

4. **Shipper D**
 - Service Request

Matching Empty Trucks with Service Requests

Empty Trucks

Service Requests

Cooperative
Empty-Backhaul Management Model

After matching (requests & empty trucks)
Truck & Request Matching Algorithm

- Date
- Type
- Volume
- Source & Destination
 - Exact match
 - Similarity match
 - Don't create more empty trucks
 - Select the most cost-effective route
Don't create more empty truck

- Original route = 900 km.
- New route = 130 + 120 = 250 km.
New route < Original route [Accepted]

- Original route = 900 km.
- New route = 600 + 500 = 1100 km.
New route > Original route [Rejected]
Select the most cost-effective route

- Cost effective value
 - Distance with requests / (1+distance w/o requests)
 - More value, more priority
Matching Possibility

2 requests / 1 truck
- Set 1 → \(P = \emptyset \).
- Set 2 → \(P = \{(R1,T1)\} \).
- Set 3 → \(P = \{(R2,T1)\} \).
- Set 4 → \(P = \{(R1, T1) (R2, T1)\} \).
 - \{(R1, T1) (R2, T1)\}
 - \{(R2, T1) (R1, T1)\}

2 requests / 2 trucks
- Set 1 → \(P = \emptyset \).
- Set 2 → \(P = \{(R1,T1)\} \).
- Set 3 → \(P = \{(R1,T2)\} \).
- Set 4 → \(P = \{(R2,T1)\} \).
- Set 5 → \(P = \{(R2, T2)\} \).
- Set 6 → \(P = \{(R1, T1)(R2, T1)\} \).
 - \{(R1, T1)(R2, T1)\}
 - \{(R2, T1)(T1, T1)\}
- Set 7 → \(P = \{(R1, T1)(R2, T2)\} \).
- Set 8 → \(P = \{(R1, T2)(R2, T1)\} \).
- Set 9 → \(P = \{(R1, T2)(R2, T2)\} \).
 - \{(R1, T2)(R2, T2)\}
 - \{(R2, T2)(T1, T2)\}
Matching Possibility

- Requests = 2: $1T^0 + 2T^1 + 1T^2$
- Requests = 3: $1T^0 + 3T^1 + 3T^2 + 1T^3$
- Requests = 4: $1T^0 + 4T^1 + 6T^2 + 4T^3 + 1T^4$
- ...

- Very expensive calculation!! = $O(T^R)$
 - Plus permutation for multiple requests in a truck
Implementation

- Empty Trucks
- Service Requests
 - Storing/Requesting Empty Truck Description
 - Storing/Requesting Service Request Description
 - Matching Empty Trucks with Service Requests
 - Matching Empty Trucks with Service Requests
 - Matching Empty Trucks with Service Requests
 - Merging and Sorting Routes
 - Ranked Routes
 - Selecting & Explaining a Designate Route

Shipper

Carrier
Experimental Environments

- **Hardware**
 - CPU Intel Core-i5 3.1 GHz, 4GB of RAM

- **Software**
 - PHP + MySQL, C + MPI (OpenMPI)

- **Data**
 - 6 months : 648 trucks, 674 requests
Execution Time

![Graph showing execution time](graph.png)
% Reduction of Empty Trucks

![Graph showing % Reduction of Empty Trucks](image)
% Reduction of Service Requests

![Graph showing % Reduction of Service Requests with months January to June. The graph compares Exact Match and Similarity Match.]
% Reduction of Empty Backhaul Distance

% Reduction of Empty Backhaul Distance

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Match</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity Match</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion & Future Work

- Empty-Backhaul Management
 - HPC meet Logistics

- Future Work
 - Partial Load
 - Trucks can carry more than one request at a time
 - More collaboration
 - Plan to collaborate with 80 truck companies
THANK YOU